42 research outputs found

    Faster Deciding MSO Properties of Trees of Fixed Height, and Some Consequences

    Get PDF
    We prove, in the universe of trees of bounded height, that for any MSO formula with mm variables there exists a set of kernels such that the size of each of these kernels can be bounded by an elementary function of m. This yields a faster MSO model checking algorithm for trees of bounded height than the one for general trees. From that we obtain, by means of interpretation, corresponding results for the classes of graphs of bounded tree-depth (MSO_2) and shrub-depth (MSO_1), and thus we give wide generalizations of Lampis\u27 (ESA 2010) and Ganian\u27s (IPEC 2011) results. In the second part of the paper we use this kernel structure to show that FO has the same expressive power as MSO_1 on the graph classes of bounded shrub-depth. This makes bounded shrub-depth a good candidate for characterization of the hereditary classes of graphs on which FO and MSO_1 coincide, a problem recently posed by Elberfeld, Grohe, and Tantau (LICS 2012)

    FO Model Checking of Geometric Graphs

    Get PDF
    Over the past two decades the main focus of research into first-order (FO) model checking algorithms has been on sparse relational structures - culminating in the FPT algorithm by Grohe, Kreutzer and Siebertz for FO model checking of nowhere dense classes of graphs. On contrary to that, except the case of locally bounded clique-width only little is currently known about FO model checking of dense classes of graphs or other structures. We study the FO model checking problem for dense graph classes definable by geometric means (intersection and visibility graphs). We obtain new nontrivial FPT results, e.g., for restricted subclasses of circular-arc, circle, box, disk, and polygon-visibility graphs. These results use the FPT algorithm by Gajarsk\'y et al. for FO model checking of posets of bounded width. We also complement the tractability results by related hardness reductions

    Clique-width: When Hard Does Not Mean Impossible

    Get PDF
    In recent years, the parameterized complexity approach has lead to the introduction of many new algorithms and frameworks on graphs and digraphs of bounded clique-width and, equivalently, rank-width. However, despite intensive work on the subject, there still exist well-established hard problems where neither a parameterized algorithm nor a theoretical obstacle to its existence are known. Our article is interested mainly in the digraph case, targeting the well-known Minimum Leaf Out-Branching (cf. also Minimum Leaf Spanning Tree) and Edge Disjoint Paths problems on digraphs of bounded clique-width with non-standard new approaches. The first part of the article deals with the Minimum Leaf Out-Branching problem and introduces a novel XP-time algorithm wrt. clique-width. We remark that this problem is known to be W[2]-hard, and that our algorithm does not resemble any of the previously published attempts solving special cases of it such as the Hamiltonian Path. The second part then looks at the Edge Disjoint Paths problem (both on graphs and digraphs) from a different perspective -- rather surprisingly showing that this problem has a definition in the MSO_1 logic of graphs. The linear-time FPT algorithm wrt. clique-width then follows as a direct consequence

    Lower Bounds on the Complexity of MSO_1 Model-Checking

    Get PDF
    One of the most important algorithmic meta-theorems is a famous result by Courcelle, which states that any graph problem definable in monadic second-order logic with edge-set quantifications (MSO2) is decidable in linear time on any class of graphs of bounded tree-width. In the parlance of parameterized complexity, this means that MSO2 model-checking is fixed-parameter tractable with respect to the tree-width as parameter. Recently, Kreutzer and Tazari proved a corresponding complexity lower-bound---that MSO2 model-checking is not even in XP wrt the formula size as parameter for graph classes that are subgraph-closed and whose tree-width is poly-logarithmically unbounded. Of course, this is not an unconditional result but holds modulo a certain complexity-theoretic assumption, namely, the Exponential Time Hypothesis (ETH). In this paper we present a closely related result. We show that even MSO1 model-checking with a fixed set of vertex labels, but without edge-set quantifications, is not in XP wrt the formula size as parameter for graph classes which are subgraph-closed and whose tree-width is poly-logarithmically unbounded unless the non-uniform ETH fails. In comparison to Kreutzer and Tazari, (1) we use a stronger prerequisite, namely non-uniform instead of uniform ETH, to avoid the effectiveness assumption and the construction of certain obstructions used in their proofs; and (2) we assume a different set of problems to be efficiently decidable, namely MSO1-definable properties on vertex labeled graphs instead of MSO2-definable properties on unlabeled graphs. Our result has an interesting consequence in the realm of digraph width measures: Strengthening a recent result, we show that no subdigraph-monotone measure can be algorithmically useful, unless it is within a poly-logarithmic factor of (undirected) tree-width
    corecore